
Theory of adsorption of polymer chains at 
spherical surfaces: 2. Conformation of 
macromolecule in different regions of 
the diagram of states 

T. M. Birshtein and O. V. Borisov 
Institute of Macromolecular Compounds. Academy of Sciences of the USSR, 
Leningrad 199004, USSR 
(Received 6 February 1990; accepted 3 April 1990) 

The chain conformation near an impermeable adsorbing sphere is investigated over a wide range of 
temperatures (attractive energy). Analytical expressions for various conformational characteristics of the 
chain with one fixed end (the number of chain contacts with the surface, the mean-square distance between 
the free chain end and the surface, the profile of monomer unit density etc.) are obtained, The influence 
of the dimensions and dimensionality of the adsorbent on the characteristics of the conformational transition 
related to the chain adsorption is analysed. 
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I N T R O D U C T I O N  

In Part 1 of this paper the analytical expressions for the 
partition function of the Gaussian chain near a spherical 
adsorbent (equations (20) and (24) in Part 1) were 
obtained and the diagram of states of the system was 
constructed. In this paper we will consider the change in 
the thermodynamic and conformational characteristics 
of a grafted chain upon adsorption, i.e. during the 
transition B ~ C ~ A due to a decrease in temperature. 
For this purpose we will use the expressions for the 
partition function, equations (31) (35) in Part 1, and for 
conformational characteristics of the chain in different 
regimes obtained from equations (26)-(30) in Part 1 and 
reported in Appendixes 1 and 2 and Tables 1 and 2 in 
Part 1 (omitting further references to these equations). 

RESULTS 

Chain 9rafted onto a plane. Regimes B p - C p - A p  

It is known that an infinitely long free chain reliably 
returns to the phantom plane, and the number of its 
returns is ~ N 1/2.  For this reason, the impermeable plane 
appreciably affects the conformation of the grafted chain 
even at T--* oc because of purely steric restrictions. The 
impermeability of the plane makes a large number of 
conformations impossible leaving permitted only the 
fraction ~ N  -1/2 of conformations of the free chain 
(addition to free energy ~ ln  N). The number of chain 
returns to the impermeable plane decreases drastically 
as compared to those to the phantom plane and virtually 
becomes independent of N (i.e. the returns take place 
mainly at the chain part near the grafted end). The 
components of the mean-square chain dimensions per- 
pendicular to the plane increase (by a factor of 21/2 in 
the case of the end-to-end dimensions). Finally, the 
concentration of units near the surface decreases (at 

z << R we have M(z) '~  z Figure I) and passes through 
a maximum at Zma x ~ "  0.96R. 

With decreasing temperature (decreasing c), this 
situation is maintained over the entire region B (c > 0, 
cR >> 1), though the attraction of units to the surface 
increases. Hence, increases also the statistical weight of 
those among the permitted conformations which corres- 
pond to chain contacts with the surface and the mean 
number of these contacts, which, however, remain 

Table 1 Asympto t i c  express ions  for the n u m b e r  of chain contac ts  with 
the surface in different regimes 

Adsorp t ion  regimes 
B C A 

Geomet r i c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
regimes c > 0 ,  cR>> I c -~0 ,  IclR << 1 c < 0 ,  IclR >> 1 

P 2R./(arcl.2 ) 
r~ >> r,0 

(ac) 1 2R21c[a ~ I 

S 
RTzl~2/(2al 

r~ << r~o 

Table 2 Asympto t i c  express ions  for the mean-squa re  dis tance  between 
the free chain  end and  the spherical  surface in different regimes (from 
equa t ion  AI .2)  

Adsorp t ion  regimes 

Geomet r i c  B C A 
regimes c > 0, c e  >> 1 c ~- 0. IclR << 1 c < 0, IclR >> I 

P 4R 2 2R 2 21cl 2 
r~ >> r~,, 

S 
6R 2 4R 2 61c1 2 

r~ >> r~o 
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Figure 1 Distribution of units of a chain grafted onto a plane in the 
direction normal to the plane in different adsorption regimes 

independent of N. The partition function of the chain 

1 
Z c(0) - -  z Lc= o0(0) 

ac 

increases too (remaining less than unity). Density 
distribution retains a maximum displaced towards the 
surface with decreasing temperature but retains the 
dependence Zma x ~ R ~ (La) 1/2. 

Upon further decrease in temperature to T ~ T¢, the 
system passes to regime C(IclR <~ 1) where steric restric- 
tions introduced by the surface are compensated for by 
attraction to it. The chain characteristics in this region 
are close to those of a free chain 'grafted' onto a phantom 
plane. The partition function is ZL¢=0(0)= 1 just as for 
a free coil; the number of contacts with the surface is 
N, ~ N U 2 ;  the size z~ is close to the corresponding size 
of the free chain; and the distribution of unit density in 
the direction normal to the plane is the same as for a 
free chain grafted onto the phantom plane with a 
maximum at z = 0. (The unit density in the semispace 
z > 0 is twice higher than that for a free chain, Figure 1). 

Further decrease in temperature leads to a transition 
to absorption regime A(c < O, IcLR >> 1), into conditions 
of GSD where the chain (even at N --* oo) contacts the 
surface of a certain fraction of its units ® -= N~/N ~ Icla 
increasing with decreasing T. The partition function 
ZL~(0 ) >> 1, and the main contribution to the free energy 
of the chain is provided by the interaction of units with 
the surface. The unit density has maximum near the 
surface and decreases exponentially with the distance 
from it (correlation length of density fluctuations in the 
normal direction is ~ Ic[-1). The height of the chain end 
above the surface (z2N) 1/2 and the thickness of the 
adsorption layer (H~) 1/2 are proportional to Icl- 1 (Figure 
1). It should be borne in mind that only weak adsorption 
blcl ~ Izl << 1 has been considered so far. 

Chain grafted onto a small particle. Regimes 
Bs(B' ~, B~')-Cs-A~-A p 

The decrease in particle size to r~ < R leads to a decrease 
in steric restrictions imposed by the particle. At T ~ ~ ,  
since the return of the free chain to the region limited in 

three directions (zero-dimensional) is not certain, the 
chain grafting onto a small particle affects the array of 
conformations and conformational characteristics of a 
long chain only in the form of independent of N end 
effects. The number of allowed conformations is found 
to be less than that for a free chain only by a factor of 

(rs/a) (addition to the free energy which is independent 
of N), the chain size coincides (with an accuracy of the 
terms ~ r J R )  with that of the free chain, and the number 
of contacts is independent of N just as for the free chain 
'grafted' onto a small phantom sphere. Near the surface 
of the sphere, the unit density re(z), just as in the case 
of a plane, decreases to zero but this effect is limited by 
the scale z~r~.  At 7.rnax~r s the density m(z) passes 
through the maximum and at rs<< z<< R decreases as 
re(z) ~ 1/(z + r~) as in the free chain (with respect to one 
end) (Figure 2). 

The overall picture of the perturbing action of a small 
particle only on the conformation of the grafted chain 
end is also retained with decreasing temperature (decreas- 
ing c) over the entire regime B~. However, two cases 
existing successively may be singled out with respect to 
the character of this action (subregimes B'~ and B~'). The 
partition function of the grafted chain in the region B s 
is determined by the equation (the first equality is obeyed 
at all rs) 

ZLc(O) = 1/(ac)ZLc= ~ (0 )=  1/cr~ (1) 

and takes the values less than unity at c- 1 < r, (subregime 
B's) and greater than unity at c - 1 >  rs (subregime B~'). 
This fact implies that in subregime B's, just as at T ~ ~ ,  
the repulsion of units from the particles continues to play 
the prevailing role, whereas in subregime B s the end 
effects acquire the character of attraction. Correspond- 
ingly, in subregime B'~, the dimensions and the concentra- 
tion profile retain the same form as at T-* ~ ,  but 
with decreasing temperature the density maximum 
approaches the surface, and the near-surface density 
increases. In subregime B~', the unit density is maximum 
at the surface, decreases as m ( z ) ~  1/(z + rs) 2 ( M ( z ) =  
const(z) at distances z <~ c- 1), and the decrease in density 
characteristic of the free chain: m(z) '~ 1/(Z+rs) X 
(M(z)  ~ (z + r~)) is established at distances c- 1 << z ~< R 
(Figure 2). 
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Figure 2 Radial distribution of units of a chain grafted onto a spherical 
particle with a radius r~ = 0.2R in different adsorption regimes 
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Further decrease in temperature transforms the chain 
into the critical regime C. The partition function increases 
with decreasing T attaining the value of ZLc(O)~ 
R/& >> 1 at the boundary of regimes B and C and retains 
this value over the entire regime Cs (with an accuracy of 
the value of the coefficient slightly increasing with 
decreasing T). In this regime the polymer chain forms 
~ N  1/2 loops of return to the surface (the number of 
contacts with the surface N s ~ N1/2), and the value of r~ 
influences only the coefficient increasing with r~. The 
height of the chain end above the surface (z~)1/2 = 2R, 
i.e. it is less by a factor of (3/2) 1,/2 than that for the free 
chain. Unit concentration is at a maximum near the 
surface and decreases as m(z )~ ( z+r~)  -2 with the 
distance from it (M(z)~cons t (z ) ,  Figure 2), which 
greatly differs from the concentration profile in the free 
chain. 

Upon  further decrease in temperature, the chain passes 
into the adsorption regime A (c < 0, [c[R >> 1). A term 
increasing exponentially with N appears in the partition 
function: the chain contacts with the surface by a finite 
(even at N ~ oo) fraction of its units ® ~ [cla forming 

N loops the length of which is independent of N. The 
height of the chain end above the surface and the 
thickness of the adsorption layer are also independent of 
N and are proportional  to Icl-1. Unit concentration is 
at a maximum at the surface, and the number of units 
in the spherical layer M(z) decreases exponentially with 
increasing distance from the surface with the correlation 
length ~ [c[- 1. At [c[- 1 ~ r~, the conformational charac- 
teristics retain a certain dependence on rs (regime A~). As 
the temperature decreases further, at [c[ -~ <<r~ the 
dependence on r s disappears: the chain passes to regime 
Ap. 

Interaction radius of  coil with a spherical particle 
Let us now consider the effect of a particle with a radius 

r~ on the conformation of the macromolecule, one end of 
which is fixed at a distance z' from the surface. It is 
evident that at z' ~ oo the chain does not 'feel' the surface 
at any T and r~ retaining the conformation of a free coil 
( z ~ ( z ' )  - ,~ ,~  ,~ 1). 

In the general case of an arbitrary z' value at T--,  oc 
we have 

((Z2R)) ZL . . . .  (z') = (z' + r~) 1 z' + r~ erf 

f l  ( ; )  z' >> min(R, , )  

~_ erf z' << R << r~ (2) 

[z'/r~ z' << r s << R 

When the temperature decreases, and z' is not very 
great the system passes successively through regimes B, 
C and A. Partition functions and numbers of contacts 
with the surface in these regimes calculated from 
equations (24)-(26) in Part  1 are given in Appendix 2. 
Let us discuss these results and establish the distances 
z' at which the effect of surface on chain conformation 
is important.  

It can be seen from equation (2) that at T ~ oo the 
small sphere (r~ << R) no longer restricts the array of chain 
conformations even at z'>> r,, whereas the restrictions 
imposed by the plane are considerable up to z' ~ R. With 

decreasing temperature, the steric effects remain pre- 
dominant  in regime Bp and subregime B's (where 
c -  1 < r, << R) and the surface affects the chain conforma- 
tion up to z ' ~ R  or z ' ~  r s, respectively. A different 
situation is observed in subregime B~' in which rs < 
c -  1 << R. As at z' = 0, the end effects in this regime have 
the character of attraction which is manifested up to 
z' ~ c  1 (the characteristic scale c -1, increases with 
decreasing distance from the critical point). The number 
of contacts between the chain and the sphere in regimes 
B is independent of r s and N and at z'<<c -1 is 
independent of the position of the fixed end z'. At 
z'>> c -1, the number of contacts decreases with increas- 
ing z' according to the power law N~ ~ c 1(c ~/z'). 

In the critical range, the existence of the sphere 
influences coil conformation at z'~< R. Moreover,  the 
number of contacts with its surface is ~ N  ~'2 and is 
approximately the same as for a chain grafted onto a 
sphere of the same radius r,. At z ' >  R, the number of 
contacts decreases exponentially with increasing z'. 

Finally, in the adsorption regime A(c < 0; IclR >> I), 
the surface influences the coil conformation at any r~ if 
its end is fixed at a distance z' < ]clR 2 ~ Llcla from it. In 
this case the conditions of GSD are obeyed, and the chain 
is attached to the surface by a finite fraction ® 
(Na) 1(2R2lc I - z') of its units, just as the chain grafted 
onto the surface. As already mentioned in this regime 
another characteristic scale ]el-1 exists, determining the 
correlation radius ~ ~ Ic[-1. When z' changes near the 
limiting value, jclR 2, by the value of _+ ~, the chain passes 
from the state of the bonded chain to that of a chain 
which virtually does not interact with the surface. The 
contribution of the ground state to the partition function 
decreases to the value of approximately 0(1), i.e. of the 
order of magnitude of the contribution of a continuous 
spectrum, and the number of chain contacts with the 
particle decreases to zero. 

DISCUSSION 

Order of  adsorption phase transition 
As already mentioned, the variation in r~ makes it 

possible to study the effect of not only the size but also 
the dimensionality of the adsorbent on the relationships 
of adsorption. At r~<< R, the spherical particle is a 
quasi-zero-dimensional (d = 0) adsorbent, i.e. the ad- 
sorbent limited in all dimensions on the chain scale, and 
in the limit r s -* oo (it is sufficient ifr~ >> R) is transformed 
into an adsorbing plane, d = 2. It is essential that the 
increase in the adsorbent size with the maintenance of 
spherical symmetry leads to a direct transition from d = 0 
to d = 2 without passing d = 1. It follows from the results 
of this work that at any r s the adsorption of infinitely 
long Gaussian chains on a spherical particle is performed 
by the second-order phase transition. This result is in 
complete agreement with the expression obtained pre- 
viously1 3 for the order K o of phase transition in the 
adsorption of Gaussian chains from the D-dimensional 
space on the d-dimensional adsorbent 

K o = J l - ½ ( D - d ) l  1 (3) 

It can be seen that at D = 3 the value of Ko = 2 both at 
d = 2  and at d = 0 .  It is noteworthy that for the 
intermediate case d =  1 (adsorption on an infinite 
cylinder) the order of phase transition K o = ~ .  
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The similarity of the cases d = 0 and d = 2 and the 
possibility of a continuous transition between them are 
associated ~-3 with the fundamental properties of random 
walks in a three-dimensional space. Although the return 
to the infinite phantom plane is reliable and that to a 
point is unreliable, the asymptotic distribution functions 
of the lengths of return loops coincide. 

At the same time, the difference in the reliability of a 
return causes the difference between the cases d = 0 and 
d = 2. Thus, there is a considerable difference between 
the character of the conformational reconstruction of a 
free chain at the beginning of adsorption for these two 
cases. The beginning of adsorption is associated with the 
formation of a large ( ~  N ~/2) number of loops of return 
to the surface. For  a chain adsorbed on a plane, this fact 
implies that the global conformation of a free coil is 
retained. In contrast, in adsorption on a point or a small 
particle, a large-scale change in conformation is required 
with entropy loss ~ N  a/2. It is of interest that in 
adsorption on a small particle in the regime B~ where the 
free chain conformation is still retained on the whole, 
near the boundary with regime C~ a specific marginal 
subregime B~' appears. In this regime, the end effects are 
of the attractive type, and the change in chain conforma- 
tion in regime C~ is prepared. 

Position o f  phase transition 
As shown above, the value of (U/T)c is virtually 

independent of the presence or absence of the imper- 
meable core in adsorption on a limitingly small (r~ << b) 
particle. In the case of its presence, this value does not 
depend on r~ and retains the same value as that for 
adsorption on a planar wall. In the case of its absence 
it decreases with increasing r s reducing to zero for 
adsorption in a planar ditch. 

The first and third results have the simplest explana- 
tion. In the critical range, the chain forms a large, ~ N 1/2, 
number of contacts with the surface. The reduced energy 
of these contacts ,,~N1/Z(U/T)c compensates for the 
entropy disadvantage of this chain conformation. Under 
these conditions two sources of loss in the conformational 
entropy of the chain exist: global chain reconstruction 
occurring, as already indicated, only at small r~ << R and 
leading to entropy losses ~(aN/rs)I/2; and local con- 
formational restrictions occurring for "~N 1/2 adsorbed 
units when an impermeable wall exists. 

The third result confirms the conclusion about the 
absence of global change in chain conformation in 
adsorption on a planar adsorbent. In the case of 
adsorption on a ditch when the local perturbing action 
of the wall is absent, adsorption begins at any virtually 
small depth of the ditch, i.e. adsorption begins on a 
phantom plane. The presence of an impermeable plane 
wall behind the potential well leads to the appearance of 
local conformational restrictions for adsorbed units. The 
beginning of adsorption requires the compensation for 
the corresponding entropy losses, and, hence, the critical 
depth of potential well differs from zero. 

The first result shows that the case of small sphere 
(r~ << b << R) is the opposite limiting case when the entropy 
losses at the beginning of adsorption are related only to 
the large-scale change in chain conformation, and the 
impermeability of the core does not lead to local entropy 
losses. 

The second result is related to a great extent to the 

O. V. Borisov 

diffusion model used. In fact, both the large scale 
reconstruction of free chain conformation in adsorption 
on a small particle and the local restrictions of conforma- 
tions of adsorbed units at the beginning of adsorption 
lead to entropy losses of the same order of magnitude 
~ N  t/2. Moreover, with increasing r s the former of these 
contributions decreases (as lira, see equation (40) in Part 
1) and the latter increases. In this case the value of 
(U/T)cN 1/2 compensating for the total entropy loss is 
independent of r s, which indicates that the increase in 
local and decrease in global entropy losses with increasing 
rs are exactly (in the framework of the diffusion model) 
mutually compensated for. Other models may lead to 
the dependence of T~ on the dimensionality, d = 0 or 
d = 2, of the impermeable adsorbent. Thus, on lattice 
models a-4 (under the conditions of a narrow wall 
potential hole r~/> b), local conformational losses do not 
decrease with rs down to the limiting small rs so that T~ 
becomes an increasing function of r~. 

Boundary conditions in adsorption (equation (17) in Part 1) 
In Part 1 of this paper, the absence of the dependence 

of Tc on rs in the adsorption of a Gaussian chain on a 
spherical surface has been considered. This result was 
obtained in the framework of the diffusion model used. 
However, in a recently published paper by Pinkus et al. 5 
the same model has been considered and the dependence 
T~ = T¢(rs) has been suggested. Our analysis showed that 
this erroneous conclusion in reference 5 is a result of 
incorrect transfer to the spherical model of some results 
grounded previously for a planar model. 

The problem of adsorption of a Gaussian chain on an 
impermeable planar surface in the framework of a 
diffusion model has been first solved by de Gennes 6. In 
this case the symmetry of the system does not require 
the transition from eigenfunctions in equation (4) in Part 
1 to other functions, and it is these functions that must 
satisfy the boundary condition 

- -  In ugh(x) = c (4) 
Ox 

where the parameter c passes through zero at the critical 
point changing its sign (c ~ ~). In reference 5, the same 
condition has been extended without additional analysis 
to eigenfunctions in the problem of chain adsorption on 
a spherical surface of a finite radius. 

The rigorous consideration carried out in our paper 
showed that in adsorption on a sphere the boundary 
condition should be superposed on functions z~(r)= 
rUde(r) rather than on functions tt'~(r). For adsorption on 
the surface of an impermeable sphere, the correct 
expression of boundary conditions leads to the absence 
of the dependence of T c on r s. It should be emphasized 
that, generally speaking, this result is well known for 
another but completely equivalent problem: the capture 
of the quantum particle by the potential well 7. 

The analogy of ensembles of chain conformations near 
the adsorbing surface and the trajectories of random walk 
of a particle near a surface with the same geometry has 
been repeatedly considered in the literature. It has been 
shown that in the case of a planar surface, the precritical 
range corresponds to the partial absorption of particles 
by the surface, and the critical point corresponds to 
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complete reflection, which is described in equation (4). 
The results of our work show that in the case of a 

spherical adsorbent of a finite radius, the critical point 
does not correspond to the condition of reflection from 
the surface. According to equations (8) and (17) in Part 
1, the behaviour of functions near the spherical surface 
is determined by its radius, and the conditions of 
reflection are obeyed only at rs ---' oo. 

Conjormations of a chain grafted onto a surface 
The results of the present paper show that the 

arrangement of a Gaussian chain grafted onto a spherical 
surface with respect to this surface is determined by the 
'adsorption' regime in which the system exists and is 
virtually independent of the size of r~ and the degree of 
permeability of the adsorbent (under the condition that 
the system is in the same adsorption regime). This 
independence is caused by the superposition and mutual 
compensation of a number of effects. Thus, in precritical 
regime B, grafted chains virtually do not return to the 
surface regardless of r~ and of whether this surface is an 
impermeable sphere (Figure 2a in Part 1) or a singled 
out spherical layer (let us bear in mind that in a planar 
variant, the regime Bp exists at a positive energy acquired 
by a chain unit upon arrival in this layer, i.e. when a 
'ditch' is replaced by a barrier, 'mountain ridge'; Figure 
2c in Part 1 ). This absence of the return results, however, 
from different reasons: the unreliability of the return of 
a free chain into a limited region at small r~ (regime B~) 
and the local perturbing action of the surface at large r, 
(the impossibility of the passage through the plane or an 
energy loss occurring on passing over the barrier) in 
regime Bp. The increase in ~ leads to an increase in both 
the probability of the return and in the perturbing action 
of the surface so that the number of chain contacts with 
the surface does not change (i.e. remains ~ N°). 

In the critical range, the chain forms a great ( ~ N  ~/2) 
number of contacts with the surface regardless of r~. At 
large ~ (regime Cp), as already mentioned, for this 
purpose it is sufficient for the chain to adopt the 
conformation of a free coil near the phantom surface (in 
the case of an impermeable plane, with the replacement 
of passages through the plane by reflections). At small ~i, 
(regime C,), a marked change in the conformation of the 
free chain is necessary. 

In regimes B and C, a certain dependence of the 
conformational characteristics of the chain on r~ is 
retained in the form of the difference between the 
numerical coefficients in the dependences of these 
characteristics on N. In adsorption regime A when the 
number of chain contacts with the surface is ,-~N, the 
dependence of these coefficients on r~ becomes weaker 
and, as can be seen from the diagram of state (Figure 3 
in Part 1 ), at relatively low temperatures the chain passes 
from regime A~ to regime Ap at any r~. 

In all regimes, a chain grafted onto the surface at one 
end consists of a part attached to the surface (this part 
may contain and contains the alternating sequence of 
adsorbed parts and loops) and a tail walking away from 
the surface and never returning to it (Figure 1 in Part 
1). In precritical regimes Bp and B~, a long chain (N >> 1) 
consists almost entirely of the tail, and the mean-square 
height of the free end above the surface is determined by 

~2/3La = 4R 2 Bp 
z2 = (La = 6R 2 B~ (5) 

In regime Bp, the value of Z2N coincides with the 
component of the square of the end-to-end dimension 
normal to the surface. In the case of an impermeable 
surface, this component increases twice as compared to 
the free chain. In regime B~, the value of z 2 coincides 
with the square of the end-to-end dimension of the free 
chain (cf. equation (A1.2)in Appendix 1). 

In contrast, in regimes Ap and A~, the tail length is 
independent of N and z 2 ~ Icr 2 In intermediate (critical) 
regimes, Cp and C~, the tail contains a certain finite 
fraction of units, and another part of the chain is a 
sequence of adsorbed parts and loops or, according to 
terminology in reference 2, a composite loop. The average 
fraction q of units in the tail under critical conditions, 
may be found from the values of ,-2N obtained in equation 
(A 1.2) in Appendix 1 which are the square of the height 
of the tail end above the surface. It is evident that 

:2 ,,.2 I q=(zNIc=o} { -N I  ..... ) {6) 

which gives the fraction of units in the tail q = 1/2 and 
2/3 in chain adsorption on a plane and on a small sphere, 
respectively. The other fraction of units, 1 - q, forms a 
composite loop. 

It is of interest that these values of q are directly related 
to the fundamental properties of random walks in free 
space, which also determine the order of adsorption phase 
transition. We mean the probability of the formation of 
loops and tails during these walks (cf. references 2 and 3). 

Let us consider a grafted chain under critical conditions 
at N >> 1. Let f(q') = f~oop(1 - q Ut,~J q ~ be the probabil- 
ity of a chain state in which N(I - q ' )  units are in t,he 
composite loop and the others, Nq' units are in the tail. 
It is known 1-3 that loop distribution at the critical point 
is the same as in the free chain near the phantom plane. 
For composite loops we have 

1 
f~oop(q') ~ (7) q':{ 

where c~ = 1/2 for composite loops of return to both a 
small particle and an infinite plane. Let us bear in mind 
that f~oop(q') is proportional to the probability of a return 
to the small particle or to the plane after exactly q'N 
steps, and the value of the exponent ~ determines the 
order of adsorption phase transition. However, the cases 
of grafting onto the plane and the small particle differ in 
the function 

1 
ftail(q') ~ (8) q'lS 

where fi = 1/2 for a tail grafted onto a plane and fl = 0 
for a tail at a small particle. For  the average tail length 
at the critical point 

f o  q'ft,il(q')fJoop(1 - q') dq' 
q . . . .  (9) 

0 t f t,il(q')f ~oop(1 -- q') dq' 

we obtain from equations (7) and (8): q = 1/2 and q = 2/3 
in the cases of a chain at the plane and at the small 
particle, respectively. Figure 3 shows the distribution 
functions f(q') of tail length at the critical point indicating 
that for a chain grafted onto a plane, the distribution is 
enriched with very long and very short tails, and for a 
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I A 

B 

0.5 
q 

Figure 3 Distribution function of chain tails at the critical point for 
a chain grafted onto a plane (curve A) and a small particle (curve B) 
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APPENDIX 1. C O N F O R M A T I O N A L  
CHARACTERISTICS OF A CHAIN 
G RA F TED  O N T O  A SPHERE 

The average number of chain contacts with the surface 
is  given in Table 1. 

It appears independent of the sphere radius rs in 
regimes B and A, but increases with r~ in regime C. For  
the chain dimensions (mean-square distance from the free 
end to the surface) we obtain from equation (27) in Part 1 

chain grafted onto a small particle, long tails predomi- 
nate. These values of q are in complete agreement with 
those found above by successive calculation. 

We draw special attention to these values of q and to 
their relationship to the fundamental properties of 
random walks in the three-dimensional space because in 
a recent paper by Grosberg and Schakhnovich 8 in which 
adsorption at a point has been investigated by the method 
of dynamic renorm group, and alternative values of 
q =  3/4 and z2]c=o = 9 / 2 R  2 have been obtained. In a 
similar manner, for a more general case of adsorption at 

a point d = 0 from the D-dimensional space it has been 
obtained in reference 8 that q = D/(2D - 2). However, in 
accordance with the above scheme we have c~ = I -  
[1 - ½(D - d)l and q = 2/D. On the basis of these consider- 
ations we suppose that the results of reference 8 
and its generalizations to the case of a heteropolymer 9 
based on the suggested methods are not completely valid. 

C O N C L U D I N G  REMARKS 

The present paper considered the adsorption of a 
Gaussian chain on a spherical particle. Although this 
model system is an idealized system and, generally 
speaking, it is impossible to carry it out in practice, its 
successive consideration seems to us important for 
passing to real systems. Let us briefly state some features 
of real systems leading to essential differences from the 
above picture and being particularly important at r s < R. 
First, the adsorbent at d = 0 can be saturated, and hence 
only ~ (rs/R) 2 part of the chain can be adsorbed on it. 
As a result, at d = 0 the adsorption transition loses the 
phase character. Further, the volume interactions in real 
chains preventing chain compactization in adsorption are 
important. The authors hope to study further the 
adsorption of polymer chains on a small particle taking 
into account these factors on the basis of the theory 
developed above. 

6 " '  - 

L cr~ \cr ,  

x (1 -- exp(c2R 2) erfc(cR)) 
cTr, I /2  C 2 

(AI.1) 

The asymptotics of this dependence corresponding to 
different adsorption and geometrical regimes are given 
in Table 2. It should be noted that at z 2 >> r 2 the value 
of z 2 is the square of the end-to-end dimension and at 
z 2 << rs 2 is the square of the projection of this dimension 
on a fixed axis. Thus, for a free chain 'grafted' onto a 
phantom sphere of radius rf (i.e. in the absence of the 
effects related to the interaction and steric restrictions) 
we have 

2rf e x p - 4 ~  (2R 2, 
R~x/2 

rf<<R 
(A1.2) 

r f>>R 

The complete expression for the distribution M~.c(z) 
of chain units above the surface (the number of units in 
a layer of unit thickness located at a distance z from the 
surface) is very cumbersome, and only the asymptotic 
expressions for all adsorption regimes will be reported. 

Regime B (c > 0, cR >> 1) 

6 (rs + z) Zz~l(0 ) 
ML~(z) "~ aZ cr, 

× 1 -~ c(r~ + z)J k,2RJ r~ + z \ R J ]  
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erf (;)l 
rs >> R >> c -1 

{[ ,lerfc( ) (rs + z) 1 + C(rs +~ 
6 
a 2 -- rs erfc 

rs+ z 

rs << c- l << R (A1.3) 

,r +z,[erfc(;R) rs erf¢) 1 
rs+z 

c- l << rs << R 

(The last relationship describes the distribution of chain 
units near an inert sphere.) 

Regime C (c ~ 0, IcIR << 1) 

6 [  2R'~ t ( 0 ){R;  1/2 e r f c ( ; )  
ML<(Z)=a2t~li2JZL< 

+ (exp(-D)-exp(- 

+zTrl/~(2erfc(R)-erfc(~R))12R 

[ ( z 2 )  zztX/2erfc(~R)l} 
+ r  s exp --4R 2 2R 

{-R2~/2-erfc(; ) + z [ e x p ( - 4 ~ 2 )  

6 -- e x p ( - ~ 2 )  + ~ (2  e r f c ( ; )  
a 2 

--erfc(~))]} rs<< R 

~-i/2 exp erfc 

r s>>R (A1.4) 

Regime A ( c < 0 ,  IclR >> 1) 

ML~(Z) ~-- (12/a2)R2lcl exp(--2lclz) (A1.5) 

The mean-square distance of units from the surface is 
found to be equal to Regime B. 

Regime B 
7Rrs 1 3R 2 + HL2~ --~ ZL~' (0) cr~ 3~ '~J  

_~ ~3R 2 r s << R 

(7R2/3 r s >> R 
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Regime A 
1 

H ~  ~ 2 Icl-2 (A1.8) 

whereas for a flee chain 'grafted' onto a phantom plane 
we have H 2 = R2/2 (and for a chain grafted onto a point 
H 2 = 3R2). 

(A1.6) 

APPENDIX 2. C O N F O R M A T I O N A L  
CHARACTERISTICS OF A CHAIN WITH ONE 
END FIXED AT A DISTANCE Z' F R O M  
THE SURFACE 

Regime B (c > 0, cR >> 1 ) 

ZLc(Z')~--(z '+rserf(;R))(z '+rs'-~ 

( ; D  ) +erfc [c(z +rs)] -~ (A2.1) 

1 Ns~(ac) 1 c z '+rserf  +1 

t 
(ac) - 1 z' << c -1 

c -1 (A2.2) 
_ Z t (ac) I z' >>c-1 

Regime C (c -~ 0, IclR << 1 ) 
/ z '2 \ , 

ZLc(Z' ) ~-- 2R e x p t -  4R2)(z + rs)-trr-1/2 

2R(z' + rs)- 1~- 1/2 Fs, Z' << R 

- ~  1 + R e x p [ - 4 e ~ ) ( z '  + ~)-1 

(~ << R -< "' 

1 r ~ > > R  

' R T r l ! 2  

2a r,, z ' << R 

2R 
Ns ~ l aTzli2 z' << R << r, 

IR \ 4R~J [ z'2 ' e x p [ - - ~ /  z'>~ R 

(A2.3) 

(A2.4) 

Regime C 

- 2R [5 2+RrsTr'/~\2 ) 
H2Lc~-- Z [ ~ l ( O ) ~  t3  R 

f5R2/3 r s << R 
N 
~.R 2 r~ >> R 

(A1.7) 

Regime A (c < 0, IclR >> 1) 
ZLc(Z' ) "~ 2 exp(c2R 2 + cz')(Icl 1 -4- Fs ) (Z '  -~- £s) 1 (A2.5) 

0 z' > R21c] 
N~ ~ (2R2Ie[ - z')a- l z' < R21d (A2.6) 

POLYMER, 1991, Volume 32, Number5 9P_9 


